The Role of Ethylene in Plants Under Salinity Stress

نویسندگان

  • Jian-Jun Tao
  • Hao-Wei Chen
  • Biao Ma
  • Wan-Ke Zhang
  • Shou-Yi Chen
  • Jin-Song Zhang
چکیده

Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene Response Factor Sl-ERF.B.3 Is Responsive to Abiotic Stresses and Mediates Salt and Cold Stress Response Regulation in Tomato

Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3) gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor) family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant ...

متن کامل

Expression of related proteins and aquaporin genes in grape (Vitis vinifera L.) under salinity sress

Due to worldwide increasing of salinity, the identification of genes conferring tolerance to plants is important. The aim of this study was to investigate salinity effects on the expression of three genes-related to proteins and aquaporin in grape (Vitis vinifera L.). Based on screening study on 18 grape genotypes, H6 and Gharashani that showed lower decrease in water potential, leaf area, leaf...

متن کامل

Growth and Chemical Composition of Pistachio Seedling Rootstock in Response to Exogenous Polyamines under Salinity Stress

In order to evaluate responses of a pistachio seedling rootstock (Pistacia vera L. cv. Ghazvini) to NaCl induced salinity stress and potential protective role of exogenous spermine and spermidine on NaCl induced salinity stress, a greenhouse experiment was conducted during growing season of 2009. The NaCl treatments, involving 800, 1600, and 3200 mg NaCl per Kg of soil for 90 days, suppressed g...

متن کامل

Role of Exogenous Application of Auxin on Antioxidant Enzyme Activities in Rice Under Salt Stress

Phytohormones such as auxin are known to be involved in alleviating the detrimental effects of salinity by modulating the activity of enzymatic antioxidants and improving antioxidant system, which help in sustaining plant growth. The present study envisaged revealing the role of exogenous application of indole-3-acetic acid (IAA) in improving defense mechanisms in two genotypes (FL485 and IR29,...

متن کامل

Promotion of Wheat Growth under Salt Stress by Halotolerant Bacteria Containing ACC deaminase

Salinity is a major abiotic stress that reduces crop productivity in arid and semiarid soils. About 25% of the country's arable land is affected by different levels of salt. A considerable part of this land is under wheat cultivation each year as the country's most important crop. ACC deaminase producing bacteria increase plant resistance to stress condition by reducing stress ethylene in a var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015